Conditional Probability

Dated Sep 29, 2017; last modified on Sun, 12 Feb 2023

Definition

Where \( \mathbb{P}(A|B) \) is the probability of event \(A\) given that event \(B\) occurs:

$$ \mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} $$

Notice that if \(P(B) = 0\) then it’s meaningless to condition \(A\) on \(B\).

Satisfying the Axioms of Probability

Axiom 1: Normalization

$$ \mathbb{P}(B|B) = \frac{\mathbb{P}(B \cap B)}{\mathbb{P}(B)} = 1 $$

Axiom 2: Non-negativity

Because \(A \cap B \subseteq B \), then \( 0 \le \mathbb{P}(A|B) \le 1 \).

Axiom 3: Additivity

Let \(A\) and \(C\) be mutually exclusive, then \( \mathbb{P}((A \cup C) | B) = \mathbb{P}(A | B) + \mathbb{P}(C | B) \)

$$ \mathbb{P}((A \cup C) | B) = \frac{ \mathbb{P}((A \cup C) \cap B) }{ \mathbb{P}(B) } $$

\\( (A \cup C) \cap B = (A \cap B) \cup (C \cap B) \\)
\\( (A \cup C) \cap B = (A \cap B) \cup (C \cap B) \\)

$$ = \frac{ \mathbb{P}(A \cap B) }{\mathbb{P}(B)} + \frac{ \mathbb{P}(C \cap B) }{\mathbb{P}(B)} $$ $$ = \mathbb{P}(A | B) + \mathbb{P}(C | B) $$