01. Sum of Powers

Dated Jun 20, 2020; last modified on Sat, 20 Jun 2020

The sums of powers, \( \sum_{k=1}^{n} k^a \), can be computed more efficiently if we have a closed formula for them.

Sum of powers for a = 1, 2, 3

$$ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} $$

One [intuitive] derivation is presented at brilliant.org :

$$ S_n = 1 + 2 + 3 + … + n $$

… can be reordered as:

$$ S_n = n + (n-1) + (n-2) + … + 1 $$

… and if we add the two equations above:

$$ 2 \cdot S_n = (n + 1) + (2 + (n-1)) + (3 + (n-2)) + … + (n + 1) $$ $$ 2 \cdot S_n = (n + 1) + (n + 1) + (n + 1) + … + (n + 1) $$ $$ S_n = \frac{n(n+1)}{2} $$

$$ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n + 1)}{6} $$

The sum re-arrangement technique for proving \( \sum_{k=1}^{n} k \) does not shed any light here. The folks at brilliant.org show an alternate proof that helps :

$$ (k−1)^3 = k^3 - 3k^2 + 3k - 1 $$ $$ \therefore k^3 - (k-1)^3 = 3k^2 - 3k + 1 $$ $$ \sum_{k=1}^{n} \left( k^3 - (k-1)^3 \right) = \sum_{k=1}^{n} \left( 3k^2 - 3k + 1 \right) $$

The above form is convenient because the LHS telescopes, and the only unknown on the RHS is \(\sum k^2\), i.e.

$$ n^3 = 3 \sum k^2 - 3 \left( \frac{n(n+1)}{2} \right) + n $$

From this point onwards, isolating \( \sum k^2 \) should give \( \frac{n(n+1)(2n + 1)}{6} \).

$$ \sum_{k=1}^{n} k^3 = \left( \sum_{k=1}^{n} k \right) ^2 = \left( \frac{n(n+1)}{2} \right)^2 $$

I don’t follow the jump from \(\sum_{k=1}^{n} k^3\) to \(\left( \sum_{k=1}^{n} k \right) ^2 \)

General Formula

If we wish to compute sums of consecutive powers, Faulhaber’s formula provides a neat way to do it :

$$ \sum_{k=1}^{n} k^a = \frac{1}{a+1} \sum_{j=0}^{a} (-1)^{j} \binom{a+1}{j} B_j n^{a+1-j} $$

where \(B_j\) is the \(j\)-th Bernoulli number, more specifically, \(B_{j}^{+}\) where \(B_{j}^{1} = \frac{1}{2}\). The Bernoullis can be generated using:

$$ B_{j}^{+} = 1 - \sum_{k=0}^{j-1} \binom{j}{k} \frac{B_{k}^{+}} {j - k + 1} $$

References

  1. CS 97SI: 02. Mathematics. Jaehyun Park. stanford.edu . Jun 29, 2015.
  2. Sum of n, n², or n³ | Brilliant Math and Science Wiki. brilliant.org .